Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.104
Filtrar
1.
Talanta ; 273: 125915, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522188

RESUMO

Aflatoxin (AFs) contamination is one of the serious food safety issues. Aflatoxin B1 (AFB1) is the most common and toxic aflatoxin, which has been classified as a class 1 carcinogen by the International Agency for Research on Cancer (IARC). It is extremely destructive to liver tissue. Developing a convenient and sensitive detection technique is essential. In this paper, we developed a homogeneous dual recognition strategy based electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1 (AFB1) based on the magnetic graphene oxide (MGO) and UiO-66. The MGO was synthesized for the recognition and magnetic separation of AFB1 from complex samples. UiO-66/ferrocenecarboxylic acid (Fc)/aptamer composites were constructed as both recognition and signal probes. The probes would specifically capture AFB1 enriched by MGO, which enables dual recognition in homogeneous solution, thus further improving the accuracy of AFB1 detection. The electrochemical aptasensor for AFB1 had a linear range from 0.005 to 500 ng mL-1. Additionally, the limit of detection was 1 pg mL-1. It shows a favorable potential for both sensitive and accurate detection of AFB1 in real samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Estruturas Metalorgânicas , Ácidos Ftálicos , Aflatoxina B1/análise , Óxido de Magnésio , Técnicas Biossensoriais/métodos , Limite de Detecção , Fenômenos Magnéticos , Técnicas Eletroquímicas/métodos
2.
Food Chem ; 447: 138917, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452540

RESUMO

The polymer ionic liquid (1-allyl-3-butylimidazolium bromide) enhanced silica aerogel was modified onto the surface of stainless-steel mesh to immobilize aptamer-1 for the specific recognition of AFB1. The porous channels of silica aerogel could prevent the interference of macromolecules in food samples. Enzyme kinetic analysis showed that the MoS2/Au was an effective peroxidase mimic with a relatively low Michaelis constant (Km) value of 0.17 mM and a high catalytic rate of 3.87 × 10-8 mol (L·s)-1, which exhibited obvious superiority compared with horseradish peroxidase. The established "sandwich-structure" biosensor was coupled with the smartphone "Color Picker" application was used to detect AFB1 with a wide linear range (1-100 ng mL-1) and low detection limit (0.25 ng mL-1). The anti-interference ability of the established biosensor was evaluated by adding different concentrations of standards in corn, peanut, and wheat and matrix effects were 90.84-106.11 %. The results showed that this method demonstrated high specificity, sensitivity, rapidity and low interference in food samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Líquidos Iônicos , Dióxido de Silício , Aflatoxina B1/análise , Colorimetria/métodos , Smartphone , Cinética , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Food Chem ; 447: 138997, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513493

RESUMO

Herein we developed a multicolor lateral flow immunoassay (LFIA) test strip for rapid and simultaneous quantitative detection of aflatoxin B1 (AFB1) and zearalenone (ZEN). Three differently colored aggregation-induced emission nanoparticles (AIENPs) were designed as LFIA signal tags, with red and green AIENPs for targeting AFB1 and ZEN at the test line, and yellow AIENPs for indicating the validity of the test strip at the control (C) line. After surface functionalization with antibodies, the developed AIENP-based multicolor LFIA allows simultaneous and accurate quantification of AFB1 and ZEN using an independent C-line assisted ratiometric signal output strategy. The detection limits of AFB1 and ZEN were 6.12 and 26 pg/mL, respectively. The potential of this method for real-world applications was well demonstrated in corn and wheat. Overall, this multicolor LFIA shows great potential for field screening of multiple mycotoxins and can be extended to rapid and simultaneous monitoring of other small molecule targets.


Assuntos
Nanopartículas Metálicas , Micotoxinas , Zearalenona , Zearalenona/análise , Aflatoxina B1/análise , Anticorpos Monoclonais , Micotoxinas/análise , Imunoensaio/métodos , Limite de Detecção , Contaminação de Alimentos/análise
4.
J Hazard Mater ; 469: 133916, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479137

RESUMO

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Arachis , Solo , Desinfecção , Aspergillus flavus , Aflatoxinas/toxicidade , Aflatoxinas/análise
5.
Int J Biol Macromol ; 264(Pt 1): 130479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431003

RESUMO

This work reports an improved enzyme-linked immunosorbent assay (ELISA) via the interaction between prussian blue nanoparticles (PBNPs) and amines for aflatoxin B1 (AFB1) detection. The effect of different amines on the structure and properties of PBNPs was systematically investigated. Amines with pKb < 7, like ethylenediamine (EDA), can decompose structure of PBNPs, leading to the reduction of extinction coefficient and photothermal effect. Whereas, amines with large pKb > 7, such as o-phenylenediamine (OPD), could undergo catalytic oxidation by PBNPs, resulting in the production of fluorescent and colored oxidation products. Accordingly, EDA and OPD were used to construct improved ELISA. Specifically, silica nanoparticles, on which AFB1 aptamer and amino binding agent (ethylenediaminetetraacetic acid disodium salt, EDTA•2Na) were previously assembled via carboxyl-amino linkage, are anchored to microplates by AFB1 and antibody. EDA concentration can be regulated by EDTA•2Na to affect extinction coefficient and photothermal effect of PBNPs, thereby achieving visual colorimetric and portable photothermal signal readout (Model 1). OPD concentration can also be controlled by EDTA•2Na, thus generating colorimetric and ultrasensitive fluorescent signals through PBNPs catalysis (Model 2). The proposed strategy not only opens new avenue for signal readout mode of biosensing, but also provides universal technique for hazards.


Assuntos
Técnicas Biossensoriais , Ferrocianetos , Nanopartículas , Aflatoxina B1/análise , Aminas , Nanopartículas/química , Ensaio de Imunoadsorção Enzimática , Técnicas Biossensoriais/métodos , Limite de Detecção
6.
Sci Rep ; 14(1): 6864, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514765

RESUMO

Aflatoxin B1 (AFB1) is widespread and seriously threatens public health worldwide. This study aimed to investigate AFB1 in imported hazelnut samples in northwest of Iran (Eastern Azerbaijan Province) using High-Performance Liquid Chromatography with a Fluorescent Detector (HPLC-FLD). In all tested samples AFB1 was detected. The mean concentration of AFB1 was 4.20 µg/kg and ranged from 3.145 to 8.13 µg/kg. All samples contained AFB1 levels within the maximum acceptable limit except for one sample. Furthermore, the human health risk assessment of AFB1 from consuming imported hazelnuts by Iranian children and adults was evaluated based on the margin of exposure (MoE) and quantitative liver cancer risk approaches. The MoE mean for children was 2529.76, while for adults, it was 8854.16, indicating a public health concern. The present study found that the risk of developing liver cancer among Iranian children was 0.11100736 per 100,000 people, and in the Iranian adult population was 0.0314496 cancers per 100,000 people. Since environmental conditions potentially affect aflatoxin levels in nuts, countries are advised to monitor aflatoxin contents in imported nuts, especially from countries with a conducive climate for mold growth.


Assuntos
Aflatoxinas , Corylus , Neoplasias Hepáticas , Adulto , Criança , Humanos , Aflatoxina B1/análise , Irã (Geográfico)/epidemiologia , Azerbaijão , Contaminação de Alimentos/análise , Aflatoxinas/análise , Medição de Risco , Cromatografia Líquida de Alta Pressão/métodos
7.
ACS Appl Mater Interfaces ; 16(13): 16494-16504, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507690

RESUMO

A novel bifunctional MOF-encapsulated cobalt-doped carbon dots nanozyme (Co-CD/PMOF) with excellent peroxidase-mimic catalytic activity and fluorescence property was synthesized and employed to fabricate a chemiluminescence/fluorescence (CL/FL) dual-mode immunosensor for AFB1 detection. Co-CD/PMOF could catalyze the luminol/H2O2 system to generate robust and long-lasting CL signals due to the slow diffusion effect and continuous generation of •OH, O2•-, and 1O2 species. Differing from traditional flash-type CL emissions, this glow-type CL emission is helpful to fabricate a sensitive and accurate CL sensing platform. Then the CL/FL dual-mode detection of AFB1 was developed using antibody-functionalized Co-CD/PMOF as the signal-amplifying nanoprobe. The CL mode assay based on indirect competitive immune principle was carried out on a chemiluminescence optical fiber platform, where the AFB1-OVA-functionalized optical fiber probe was employed for biorecognition, separation, and signal conducting. The AFB1 detection range and LOD were 0.63-69.36 ng/mL and 0.217 ng/mL, respectively. Using AFB1 antibody-functionalized immunomagnetic beads for capturing and separation, the FL mode detection of AFB1 was established based on the sandwich immune principle. A linear range of 0.54-51.91 ng/mL and a LOD of 0.027 ng/mL were obtained. This work designed a sensitive, rapid, and reliable nanozyme-powered dual-mode assay strategy and provided technical support in the field of environmental monitoring and food safety.


Assuntos
Técnicas Biossensoriais , Luminescência , Aflatoxina B1/análise , Carbono , Peróxido de Hidrogênio , Imunoensaio , Anticorpos , Limite de Detecção
8.
Anal Chim Acta ; 1298: 342383, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462344

RESUMO

Developing an accurate and precise approach for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) is significant for food safety surveillance. Herein, a photoelectrochemical sensing platform was constructed based on polycarboxylic ionic liquid functionalized metal-organic framework integrated with gold nanoparticles (Yb-MOFs@AuNPs). Sulfhydryl functionalized hairpin DNA (hDNA) was immobilized on a Yb-MOFs@AuNPs modified glassy carbon electrode (GCE) surface through Au-S bond. After blocking residual active binding sites with BSA, gold nanoparticles-labeled AFB1 aptamer (AuNPs-Apt 1) and gold nanorods-labeled OTA aptamer (AuNRs-Apt 2) were introduced to construct a photoelectrochemical aptasensor for the simultaneous determination of AFB1 and OTA. Due to the surface plasmon resonance effect and the nanometer size effect of gold nanomaterials, the photoelectrochemical aptasensor can output photocurrent responses as being excited with different wavelengths at 520 nm and 808 nm, respectively. When the AFB1 and OTA concentration in the range of 0.001-50.0 ng mL-1, a good linear relationship between the photocurrent difference (ΔI) before and after recognizing targets and the logarithm of AFB1 or OTA concentration was obtained. The detection limits for AFB1 and OTA were 0.40 pg mL-1 and 0.19 pg mL-1, respectively. AFB1 and OTA in corn samples were detected simultaneously by the photoelectrochemical aptasensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Líquidos Iônicos , Nanopartículas Metálicas , Ocratoxinas , Ouro/química , Aflatoxina B1/análise , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Eletroquímicas
9.
J Agric Food Chem ; 72(11): 5975-5982, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462975

RESUMO

Due to the high toxicity of aflatoxin B1 and its risks to human health, we developed a click reaction-mediated automated fluorescent immunosensor (CAFI) for sensitive detection of aflatoxin B1 based on the Cu(I)-catalyzed click reaction. With its large specific surface area, a copper-based metal-organic framework (Cu-MOF) was synthesized to adsorb and enrich the copper ion (Cu(II)) and then load the complete antigen (BSA-AFB1). After the immunoreaction, Cu(II) inside the Cu-MOF-Antigen conjugate would be reduced to Cu(I) in the presence of sodium ascorbate, which triggered the click reaction between the fluorescent donor-modified DNA and the receptor-modified complementary DNA to lead to a fluorescence signal readout. The whole reaction steps were finished by the self-developed automated immunoreaction device. This CAFI method showed a limit of detection (LOD) of 0.48 pg/mL as well as a 670-fold enhancement in sensitivity compared to conventional ELISA, revealing its great potential in practical applications and automated detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Cobre , Aflatoxina B1/análise , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Corantes , Limite de Detecção
10.
Food Chem ; 446: 138817, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401299

RESUMO

Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 µg/kg and 4-400 µg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.


Assuntos
Micotoxinas , Zearalenona , Zearalenona/análise , Aflatoxina B1/análise , Micotoxinas/análise , Magnetismo , Zea mays , Fenômenos Magnéticos , Limite de Detecção
11.
Anal Methods ; 16(9): 1330-1340, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38328893

RESUMO

Designing a simple and sensitive photoelectrochemical (PEC) sensor is crucial to addressing the limitations of routine analytical methods. The sensitivity of the PEC sensor, however, relies on the photoelectric material used. In this manuscript, composites of MoS2/rGO (MG) with a large area and layered structure are prepared by simple steps. This material exhibits sensitivity to visible light and demonstrates outstanding photoelectric conversion performance. The constructed PEC aptasensor using this material to detect aflatoxin B1 (AFB1) shows significantly higher sensitivity and stability compared to similar sensors. This may be attributed to the presence of surface defects in MoS2, which provide more active sites for photocatalysis. Additionally, graphene oxide (GO) is reduced to rGO by thiourea and forms a heterojunction with MoS2, enhancing charge carrier separation and interfacial electron transfer. Our research has revealed that the photocurrent intensity of the aptamer electrode decreases with an increase in AFB1 concentration, resulting in a "signal-off" PEC aptasensor. The detection limit of this aptasensor is 2.18 pg mL-1, with a linear range of 0.001 to 100 ng mL-1. This result will also provide a reference for the study of other mycotoxins in food.


Assuntos
Aflatoxina B1 , Molibdênio , Aflatoxina B1/análise , Molibdênio/química , Grão Comestível/química , Luz
12.
Anal Biochem ; 689: 115493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403259

RESUMO

Aflatoxin B1 (AF-B1) are toxins secreted by secondary metabolites of molds that have adverse effects on humans and animals resulting in huge economic losses. Here we report on field useable, cost effective and direct electrochemical sensor based on conducting polymer composite electrode, Poly (3,4-ethylenedioxythiophene): polystyrene sulphonic acid (PEDOT-PSS) for label-free detection of AF-B1. Structural and morphological characterization of composite electrodes were carried out using XRD and SEM. We compared two different electroanalytical techniques namely, transient capacitance and differential pulse voltammetry, to select the most prominent technique for analyzing the mycotoxin easily. For direct detection of AF-B1, transient capacitance measurement at 77 and 1000 Hz was employed wherein sensor showed linearity in 18.18-300.0 ng mL-1 range at 77 Hz for AF-B1. Best limit of detection (LOD) for AF-B1 was 55.41 ng mL-1 (369 pM) at 77 Hz with very good repeatability. DPV showed linearity in the range 18.18-342.85 ng mL-1 with LOD 435 pM. For demonstration of application of this sensor directly using minimum sample preparation, AF-B1 sensing has been confirmed successfully using white button mushrooms and okra stored at ambient conditions. Sensor response with real samples suggest usefulness of sensor to monitor stored farm products easily.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Animais , Humanos , Aflatoxina B1/análise , Técnicas Biossensoriais/métodos , Imunoensaio , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
13.
Anal Chim Acta ; 1295: 342328, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355226

RESUMO

Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanopartículas , Aflatoxina B1/análise , Dióxido de Silício/química , DNA/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Aptâmeros de Nucleotídeos/química
14.
J Food Sci ; 89(3): 1814-1827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317383

RESUMO

Antifungal and antimycotoxigenic activity of fullerenol nanoparticles (FNPs) were investigated on Aspergillus flavus growth isolated from a real food sample and aflatoxins (AFs) (AFB1 and AFB2 ) production. The final FNPs concentrations in in vitro and in commercial corn flour after the stationary incubation period of 7 and 14 days were in the range 0.16-80 µg/mL and 0.16-80 µg/g, respectively. Nanocharacterization of FNPs revealed an average size of 5-20 nm and a zeta potential of -35 mV. The highest degree of A. flavus mycelium growth inhibition (28%) after 7 days was observed for applied FNP concentration of 8.0 µg/mL, while after 14 days FNP concentration of 0.32 µg/mL led to the maximal inhibition of A. flavus mycelium growth (36%). Spearman's correlations analysis revealed a strong positive correlation between AFB1 and AFB2 concentrations in YES broth after 7 (R = 0.994, p < 0.05) and 14 days (R = 0.976), as well as between AFs concentrations and A. flavus mycelium mass after 7 (R = 0.786 for AFB1 and R = 0.766 for AFB2 ) and 14 days (R = 0.810 for AFB1 and R = 0.833 for AFB2 ). Paired samples t-test showed the existence of a statistically significant difference (p < 0.05) between the produced AFs concentrations after the incubation of 7 and 14 days. Regarding the artificially inoculated corn flour the lower applied FNP concentrations (0.16-0.8 µg/g) achieved a reduction of AFB1 up to 42% and 60% after 7 and 14 days, respectively.


Assuntos
Aflatoxinas , Aspergillus flavus , Fulerenos , Aflatoxinas/análise , Farinha/análise , Aflatoxina B1/análise
15.
ACS Appl Mater Interfaces ; 16(9): 11809-11820, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386848

RESUMO

Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Peroxidase , Aflatoxina B1/análise , Estruturas Metalorgânicas/química , Colorimetria , Peróxido de Hidrogênio , Corantes , Aptâmeros de Nucleotídeos/química , Limite de Detecção
16.
Toxicon ; 240: 107640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325757

RESUMO

The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.


Assuntos
Capsicum , Fator de Ativação de Plaquetas/análogos & derivados , Animais , Galinhas , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Pós/farmacologia , Citocinas , Adipocinas/farmacologia , Fígado , Suplementos Nutricionais , Imunoglobulinas , Carne , Ração Animal/análise
17.
Anal Chim Acta ; 1292: 342245, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309853

RESUMO

BACKGROUND: DNA tweezers, classified as DNA nanomachines, have gained prominence as multifunctional biosensors due to their advantages, including a straightforward structure, response mechanism, and high programmability. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. Some small molecules, such as mycotoxins, often require more sensitive detection due to their extremely high toxicity. Therefore, more effective signal amplification strategies are needed to further enhance the sensitivity of DNA tweezers in biosensing. RESULTS: We designed programmable DNA tweezers that detect small-molecule mycotoxins and miRNAs through simple sequence substitution. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. We introduced the Strand Displacement Amplification (SDA) technique to address this limitation, proposing a strategy of novel programmable DNA tweezers-SDA ultrasensitive signal amplification fluorescence sensing. We specifically investigate the effectiveness of this approach concerning signal amplification for two critical mycotoxins: aflatoxin B1 (AFB1) and zearalenone (ZEN). Results indicate that the detection ranges of AFB1 and ZEN via this strategy were 1-10,000 pg mL -1 and 10-100,000 pg mL -1, respectively, with corresponding detection limits of 0.933 pg mL -1 and 1.07 pg mL -1. Compared with the DNA tweezers direct detection method for mycotoxins, the newly constructed programmable DNA tweezers-SDA fluorescence sensing strategy achieved a remarkable 104-fold increase in the detection sensitivity for AFB1 and ZEN. SIGNIFICANCE: The constructed programmable DNA tweezers-SDA ultrasensitive signal-amplified fluorescence sensing strategy exhibits excellent detection performance for mycotoxins. The superb versatility of this strategy allows the developed method to be easily used for detecting other analytes by simply replacing the aptamer and cDNA, which has incredible potential in various fields such as food safety screening, clinical diagnostics, and environmental analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Micotoxinas , Zearalenona , Micotoxinas/análise , Zearalenona/análise , DNA , DNA Complementar , Limite de Detecção , Aflatoxina B1/análise
18.
Biosens Bioelectron ; 250: 116057, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286091

RESUMO

Aflatoxin B1 (AFB1) is considered as a serious carcinogenic mycotoxin that was widely detected in grains and foods, and its sensitive analysis is of key importance to avoid the health threats for consumers. In this study, a dual-signal aptasensor based on cascade of entropy-driven strand displacement reaction (ESDR) and linear rolling circle amplification (LRCA) was fabricated for ultrasensitive determination of AFB1. At the sensing system, the complementary strand would be released after the aptamer combined with AFB1, which will bring about the functional domains exposed, triggering the subsequent ESDR. Meanwhile, the two strands that were outputted by ESDR would incur the downstream LRCA reaction to produce a pair of long strands to assist in the generation of fluorescence and absorbance signals. Under the optimized conditions, the proposed aptasensor could achieve excellent sensitivity (limit of detection, 0.427 pg/mL) with satisfactory accuracy (recoveries, 92.8-107.9 %; RSD, 2.4-5.0 %), mainly ascribed to the cascade amplification. Importantly, owing to the flexibility design of nucleic acid primer, this analytical method can be applied in monitoring various hazardous substances according to the specific requirements. Our strategy provides some novel insights at signal amplification for rapid detection of AFB1 and other targets.


Assuntos
Aptâmeros de Nucleotídeos , Benzenossulfonatos , Técnicas Biossensoriais , Aflatoxina B1/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
19.
Food Chem ; 441: 138382, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38218151

RESUMO

Aflatoxin B1 (AFB1), a hepatotoxic and carcinogenic food contaminant, is commonly found in agricultural food. Herein, Au NPs anchored ZIF-8-derived porous carbon-ZnO (Au NPs/PCZIF-8-ZnO) was firstly synthesized to act as the sensing substrate. Then, a ratiometric electrochemical (EC) and "off-on" photoelectrochemical (PEC) dual-mode paper-based aptasensor was presented for AFB1 detection based on a distance-modulation sensing strategy. The independent signal transduction mechanisms and output mode not only broaden the dynamic detection range but also provide a self-verification to assay results, improving the sensitivity and reliability. The wide detection ranges of 0.1 pg/mL-100 ng/mL (EC mode) and 0.02 pg/mL-100 ng/mL (PEC mode) were obtained using dual-mode aptasensor, with detection limits of 36.7 and 9.3 fg/mL, respectively. The fabricated aptasensor exhibited excellent selectivity, reproducibility and stability. Furthermore, it exhibited good practicability for AFB1 assays in real samples, demonstrating great potential applications for food safety evaluation.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Óxido de Zinco , Aflatoxina B1/análise , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro
20.
Food Chem ; 442: 138312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219562

RESUMO

Herein, a bifunctional electrochemical biosensor based on the DNA tetrahedral scaffolds (TDNs) was proposed, OTA@TDNs and AFB1@TDNs were adopted for electrochemical signal output in response to OTA and AFB1 concentration, simultaneously. In order to increase the conductivity of the biosensor, highly porous gold (HPG) was loaded on electrode surface by pulse electrodeposition. Under optimal conditions, the PFc displayed a linear range with AFB1 concentration between 0.05 âˆ¼ 360 ng·mL-1 with the LOD of 3.5 pg·mL-1. And the PMB selective and sensitive responses to OTA are achieved with a linear range of 0.05 âˆ¼ 420 ng·mL-1 and a LOD of 2.4 pg·mL-1. This biosensor has high sensitivity, selectivity and stability for OTA and AFB1 detection in peanut samples. The approach streamlines the experimental procedure, leading to significantly improve the detection efficiency of mycotoxins. Collectively, this method suggest a novel approach for the detection and monitoring of OTA and AFB1 in food sample.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , Ocratoxinas/análise , Aflatoxina B1/análise , Contaminação de Alimentos/análise , DNA , Limite de Detecção , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...